3033. [2005 : 175, 177] Proposed by Eckard Specht, Otto-von-Guericke University, Magdeburg, Germany.

Let I be the incentre of $\triangle ABC$, and let R and r be its circumradius and inradius, respectively. Prove that

$$6r \leq AI + BI + CI \leq \sqrt{12(R^2 - Rr + r^2)}$$
.

I. Solution by Arkady Alt, San Jose, CA, USA.

[Ed: We give Alt's argument for the left inequality only.]

Let K and s be the area and the semiperimeter of the triangle. Using the well-known (or easy to prove) formulas

$$AI \ = \ \sqrt{rac{bc(s-a)}{s}} \,, \quad BI \ = \ \sqrt{rac{ca(s-b)}{s}} \,, \quad CI \ = \ \sqrt{rac{ab(s-c)}{s}} \,,$$

 $abc=4KR,~K=sr,~K=\sqrt{s(s-a)(s-b)(s-c)},~{
m and~the~AM-GM}$ Inequality, we obtain

Thus, $AI + BI + CI \ge 3\sqrt[3]{4Rr^2}$. This inequality is stronger than the one proposed, because Euler's Inequality implies that $3\sqrt[3]{4Rr^2} \ge 6r$.

II. Solution by Walther Janous, Ursulinengymnasium, Innsbruck, Austria.

We give a solution "from the books". The inequality $AI+BI+CI \geq 6r$ is item 12.1 in [1]. On the other hand, item 12.2 in [1] is the inequality $AI+BI+CI \leq 2(R+r)$, which is stronger than the proposed one, because the well-known Euler's Inequality $R \geq 2r$ implies that $(R-2r)(2R-r) \geq 0$, and this is equivalent to $2(R+r) \leq \sqrt{12(R^2-Rr+r^2)}$.

References

[1] O. Bottema et al., Geometric Inequalities, Groningen, 1969

Also solved by ŠEFKET ARSLANAGIĆ, University of Sarajevo, Sarajevo, Bosnia and Herzegovina; MICHEL BATAILLE, Rouen, France; SCOTT BROWN, Auburn University, Montgomery, AL, USA; CHIP CURTIS, Missouri Southern State University, Joplin, MO, USA; JOHN G. HEUVER, Grande Prairie, AB; JOE HOWARD, Portales, NM, USA; PANOS E. TSAOUSSOGLOU, Athens, Greece; LI ZHOU, Polk Community College, Winter Haven, FL, USA; and the proposer.